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Recap

We recall that

For some space S, we call a function

d : S × S −→ R

a distance, if it fulfils the following three requirements ∀a, b ∈ S:
1 d(a, b) = 0 ⇔ a = b

2 d(a, b) ≥ 0

3 d(a, b) = d(b, a)

The definition of the euclidean distance is, for some p ∈ N,

deuclid : Rp × Rp −→ R, (a, b) 7−→

√√√√ p∑
i=1

(ai − bi)2 .
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Metric (space)s

Metric (spaces) I

To be more precise, the previous definition is sometimes given for
metric spaces, other times distance is used as a synonym for metric.

Let’s say that in our previous definition, we also required d to fulfill
the triangle inequality (which is how we get a metric), meaning that
for a, b, c ∈ S

d(a, c) ≤ d(a, b) + d(b, c) . (1)

Then, the positivity assumption becomes redundant, because

0
by (1)
= d(a, a) ≤ d(a, b) + d(b, a)

by (3)
= 2d(a, b) ,

so it has to hold that d(a, b) ≥ 0 ∀a, b ∈ S!
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Metric (space)s

Metric (spaces) II

Definition (Metric (space))

Given some space S, we call a function d : S × S −→ R metric (or
sometimes distance), if it fulfils the following three requirements
∀a, b, c ∈ S:

1 d(a, b) = 0 ⇔ a = b

2 d(a, b) = d(b, a) (Symmetry)

3 d(a, c) ≤ d(a, b) + d(b, c) (Triangle Inequality).

The pair (S, d) is then called a metric space.
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Metric (space)s

Metric (spaces) III

Fun fact: Metric spaces generalize the concept of the ”real line“ R in
calculus!

In all kinds of settings, we will use them as the basis to formulate a
mathematical question.

Another, somewhat similar general concept are normed vector
spaces, where the norm gives the length of a vector.
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Metric (space)s

Connection between norms and distances/metrics I

Definition (credited to John K. Hunter)

A normed vector space (S, ∥ · ∥) is a vector space X (which we assume to
be real) together with a function

∥ · ∥ : S → R ,

called a norm on S, such that for all x, y ∈ S and k ∈ R :
1 0 ≤ ∥x∥ < ∞ and ∥x∥ = 0 if and only if x = 0;

2 ∥kx∥ = |k|∥x∥

3 ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
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Metric (space)s

Connection between norms and distances/metrics II

A norm on a vector space will always give rise to a metric on the same
vector space by taking the norm of the difference between two vectors.

Proposition

If (S, ∥ · ∥) is a normed vector space, then

d : S × S → R , (x, y) 7→ ∥x− y∥

is a metric on S.

Proof.
The metric-properties of ∥x− y∥ follow immediately from the
norm-properties - check it yourself :)
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Metric (space)s

Some examples of norms for S = Rm I

p-norm:
∥x∥p := (|x1|p + |x2|p + · · ·+ |xm|p)

1
p

Euclidean norm, which is equal to the 2-norm:

∥x∥ :=
√

x21 + x22 + · · ·+ x2m

Note: The euclidean norm clearly gives rise to the euclidean distance
deuclid, which is also a metric, using the previous proposition.

Maximum norm:

∥x∥max := max
{
|x1|, |x2|, . . . , |xm|

}
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Metric (space)s

Some examples of norms for S = Rm II

Figure: The unit balls in R2 for the Euclidean norm (B2), the 1-norm (B1) and
the maximum norm (Bmax). Source: https://www.math.ucdavis.edu/ hunter/book/ch1.pdf
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Motivation: When and why use (which) metrics?

What do Statisticians use metrics for?

Clearly, metrics quantify some notion of distance between
mathematical objects - which we basically need everywhere, all the
time!

Just some examples:

1 We recall that we may view estimates of variance as inertia or spread
around the center of gravity - for which we require a definition of
distance between our points!

2 Anytime we want to optimize something w.r.t. distance/loss - both in
supervised and unsupervised learning!
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Motivation: When and why use (which) metrics?

Supervised vs. unsupervised learning: an overview
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Motivation: When and why use (which) metrics?

Examples of using loss in (un)supervised learning

Parameter estimation using OLS! Here, we want to minimize over
the squared loss (which is clearly a metric) to estimate a parameter
−→ supervised learning.

Clustering according to some loss (metric) in unsupervised
learning - we need to know how close points are to, e.g., “means”.

Figure: Example of Clustering; Source:Towards Data Science
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https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c


Motivation: When and why use (which) metrics?

Relevant spaces to consider metrics on

Spaces of “data points”. Here, there are actually different cases we
need to consider separately :

1 metric data points taking values in Rm, m ∈ N.

2 categorical data points taking values in Ω1 × · · · × Ωm, m ∈ N - where
Ωi = {ω(i)

1 , ω
(i)
2 . . . } denotes the set of values the ith variable/entry of

the data point could take.

3 mixed data points, where some entries/variables are metric and others
categorical.

Function spaces. These are, for example, relevant in nonparametric
statistics, where the parameters are functions.

Spaces of probability measures. These have a host of applications,
from parameter estimation to proof of convergences etc.
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Metrics for points Points in Rm

Basic metrics for metric data (on Rm) I

Using the proposition from slide 7 and the norms from slide 9, we
immediately get the following metrics:

p-metric:

dp(x, y) := ∥x− y∥p =

(
m∑
i=1

|xi − yi|p
) 1

p

Euclidean distance, which is equal to the 2-metric:

deuclid(x, y) := ∥x− y∥ =

√√√√ m∑
i=1

(xi − yi)2

Chebyshev distance (induced by the Maximum norm):

dChebyshev(x, y) := ∥x−y∥max = max
{
|x1−y1|, |x2−y2|, . . . , |xm−ym|

}
Hannah Schulz-Kümpel Multivariate Verfahren 15 / 35



Metrics for points Points in Rm

Basic metrics for metric data (on Rm) II

Furthermore, the 1-metric is referred to as Manhattan distance:

dManhattan(x, y) :=

m∑
i=1

|xi − yi|

From: Fu, Chen & Yang, Jianhua. (2021). Granular Classification for Imbalanced Datasets:
A Minkowski Distance-Based Method. Algorithms. 14. 54. 10.3390/a14020054.
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Metrics for points Points in Rm

Distances on Rm that are not quite metrics I

Sometimes to quantify standardized distances between points, the
following similarity approach is used:

1 Define a similarity measure s : S × S −→ R, s.t.

δ(a, a) = 1 ∀a ∈ S & δ(a, b) = δ(b, a) ∀a, b ∈ S

2 Define the distance function

d : S × S −→ R, (a, b) 7−→ 1− δ(a, b) .

One example would be using the Pearson correlation coefficient as δ to
get the Pearson correlation distance.
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Metrics for points Points in Rm

Distances on Rm that are not quite metrics II

Another, quite popular choice for similarity measure is the cosine
similarity

δcos : Rm × Rm −→ [−1, 1], (x, y) 7−→
∑n

i=1 xiyi
∥x∥∥y∥

,

which gives rise to the cosine distance

dcos(x, y) := 1− δcos(x, y) .

The cosine distance is often used in the context of data mining; for
instance in information retrieval and text mining, where each word is
assigned a unique coordinate.
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Metrics for points Points in Rm

Distances on Rm that are not quite metrics III

Then, the distance depends not on the length of the vectors, but on
the the angle between them w.r.t. the center of the coordinate space.
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Metrics for points Points in Rm

Distances on Rm that are not quite metrics III

Then, the distance depends not on the length of the vectors, but on
the the angle between them w.r.t. the center of the coordinate space.
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Metrics for points Points of categorical data

Basic approach to metrics for categorical data points

For categorical data points taking values in Ω = Ω1 × · · · × Ωm,
m ∈ N, the simplest and most popular metric is what is often referred
to as 0-1 loss:

L : Ω× Ω −→ {0, 1}, (x, y) 7−→

{
0, if x = y,

1, otherwise.

For ordered categorical data points, i.e. when ω1 ≪ ω2 ≪ · · · ≪ ωm

we could expand the concept of 0− 1 loss and replace “1, otherwise”
with a different distance value for each pair of possible values, as long
as the pair (ω1, ωm) gets assigned the largest distance value and so on.

Additionally, if a distance instead of a metric suffices, we may use the
similarity approach from slide 17, taking, e.g., a correlation coefficient
for categorical variables as δ.
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Metrics for points Points of categorical data

Pairwise comparison:Hamming and Levenshtein distances I

Another approach to comparing categorical data points is to pairwise
compare each element.

This approach is especially popular in information theory, linguistics,
and computer science.

In this context, the Hamming and Levenshtein distances are
especially popular.

While we will not consider the exact definitions, the following provides
an intuition for both:
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Metrics for points Points of categorical data

Pairwise comparison:Hamming and Levenshtein distances II

The Hamming distance quantifies the the number of positions at
which the elements of our categorical points are different.

Here is an example from Medium:
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https://medium.com/geekculture/total-hamming-distance-problem-1b74decd71c9


Metrics for points Points of categorical data

Pairwise comparison:Hamming and Levenshtein distances III

Meanwhile, the Levenshtein distance can even compare points of
different lengths! It quantifies the minimum of changes (including
deletions) necessary to change one point into the other.

Here is an example from Towards Data Science:
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https://towardsdatascience.com/3-text-distances-that-every-data-scientist-should-know-7fcdf850e510


Metrics for points Points of mixed data

What if we have mixed data points?

Metrics defined specifically for mixed data are not a focus of this class,
but here is one exemplary suggestions:

Use a weighted sum of distances: Let’s say that we can “divide” a
mixed data point into L parts, for each of which we have a suitable
distance function at hand. Then we may define

d(x,y) =

L∑
l=1

dl(x[l],y[l]) · wl ,

but mind the scaling of variables within our parts and define the
weights carefully to achieve a meaningful result.
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Metrics for functions

Function spaces

Sometimes, we will want to quantify the distance between functions.

In applied statistics, this is mostly the case when the parameter of a
model is a function instead of a finite-dimensional vector
(Nonparametric inference).

How do we define function spaces? Well usually, we say that some
function space is the set of all functions that

1 map from the same space (preimage)

2 to the same space (image)

3 fulfill some additional characteristics.
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Metrics for functions

Some popular norms and metrics on function spaces I

For a function f : X −→ Y , the supremum norm is defined as

∥f∥∞ := sup
{
|f(x)| : x ∈ X

}
which, for another function g : X −→ Y gives rise to the following
metric:

∥f − g∥∞ := sup
{
|f(x)− g(x)| : x ∈ X

}
.

What would we need from a function space on which this norm and
metric are defined?
Definitely, that for any function in the space |f(x)| < ∞ ∀x ∈ X.

▶ For example:
B(R) := {f : R −→ R|∃M ∈ R : f(x) ≤ M ∀x ∈ X}.
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Metrics for functions

Some popular norms and metrics on function spaces II

For a function f : X −→ Y , the p-norm is defined as

∥f∥p :=
(∫

X
|f(x)|pdx

) 1
p

which, for another function g : X −→ Y gives rise to the following
metric:

∥f − g∥p :=
(∫

X
|f(x)− g(x)|pdx

) 1
p

.

What would we need from a function space on which this norm and
metric are defined? Definitely, that for any function in the space∫
X |f(x)|pdx < ∞.

▶ For example: C(K) := {f : K −→ R|f is continuous} for some
compact set K such as [a, b], a, b ∈ R.
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Metrics for random variables/distributions

Metrics for random variables/distributions

Next we will look at two popular metrics, plus a “distance-like”
function (does not satisfy all requirements), for probability measures.

Note that the elements that we are comparing are probability
measures, and we need to define a suitable space for them.

Let Ω denote some specific sample space equipped with σ-algebra F .

For the following slides, we will assume that all mentioned probability
measures are elements of the following set:

S
(
Ω,F

)
=
{
µ : µ is a probability measure on (Ω,F)

}
.
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Metrics for random variables/distributions

Total Variation (TV) distance

The total variation (TV) distance is a metric for probability measures
which quantifies the largest absolute difference between the
probabilities that the two probability distributions assign to the same
event.

For two probability measure µ and ν defined on the same probability
space (Ω,F), it is defined as

DTV(µ, ν) = sup
A∈F

|µ(A)− ν(A)| .

Note that this metric again organically arises from the TV-norm
∥µ∥TV := supA∈F |µ(A)| on the space S

(
Ω,F

)
we previously defined.
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Metrics for random variables/distributions

Wasserstein metric

The Wasserstein metric is a metric for probability measures.

Very broadly, we may interpret this metric as quantifying the
“minimum cost” of transforming one probability measure into another.

Specifically, the p-Wasserstein metric between probability measures µ
and ν is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Ω×Ω

d(x, y)pdγ(x, y)

)1/p

,

where Γ(µ, ν) is the set of possible probability measures on Ω× Ω, so
that µ and ν exist as marginal distributions and d is a suitable metric
on Ω.
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Metrics for random variables/distributions Not quite a metric: KL divergence

Kullback–Leibler (KL) divergence I

The Kullback-Leibler (KL) divergence, also known as relative entropy,
is a measure of how one probability distribution diverges from a
second probability distribution.

While it is often used to quantify how different an estimate of a
probability distribution is from the probability distribution we
theoretically expected (or assume to be true).

Note, however, that the KL divergence is not a metric because it does
not fulfill the requirement of symmetry!
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Metrics for random variables/distributions Not quite a metric: KL divergence

Kullback–Leibler (KL) divergence II

Definition (Kullback–Leibler (KL) divergence)

For two probability measures µ and ν on a space X , the Kullback–Leibler
divergenceis defined as

DKL(µ||ν) =
∫
X
log

(
µ(x)

ν(x)

)
dµ(x)

=



∫∞
−∞ µ(x) · log

(
µ(x)
ν(x)

)
dx, if µ and ν are defined

by continuous distributions;∑
x∈M µ(x) · log

(
µ(x)
ν(x)

)
, if µ and ν are defined

by discrete distributions.
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Metrics for random variables/distributions Not quite a metric: KL divergence

Kullback–Leibler (KL) divergence III

Visualization
Source: Yang, Xuxi & Duvaud, Werner & Wei, Peng. (2020). Continuous Control for Searching and Planning with a Learned Model.
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Metrics for random variables/distributions Not quite a metric: KL divergence

KL divergence and maximum likelihood I

Interestingly, maximum likelihood estimation (in parametric, i.i.d. settings),
asymptotically, amounts to minimizing the KL divergence between the

“true” assumed distribution and the estimated distribution.

Per definition, we have that

DKL[P (x|θ0) ∥P (x|θ̂)] = Ex∼P (x|θ0)

[
log

P (x|θ0)
P (x|θ̂)

]

= Ex∼P (x|θ0)

[
log P (x|θ0)− log P (x|θ̂)

]
= Ex∼P (x|θ0)

[
log P (x|θ0)

]
− Ex∼P (x|θ0)

[
log P (x|θ̂)

]
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Metrics for random variables/distributions Not quite a metric: KL divergence

KL divergence and maximum likelihood II

=⇒ argmin
θ̂

DKL[P (x|θ0) ∥P (x|θ̂)] = argmax
θ̂

Ex∼P (x|θ0)

[
logP (x|θ̂)

]
The law of large numbers (LLN) gives us that

lim
n−→∞

1

n

n∑
i=1

log P (xi|θ̂) = Ex∼P (x|θ0)

[
log P (x|θ̂)

]
.

And, therefore, we have

argmin
θ̂

DKL[P (x|θ0) ∥P (x|θ̂)] = argmax
θ̂

1

n

n∑
i=1

log P (xi|θ̂)

= argmax
θ̂

log P (xi|θ̂)

= argmax
θ̂

P (xi|θ̂) = θ̂ML !
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