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© Recap
© Metric (space)s
© Motivation: When and why use (which) metrics?
@ Metrics for points
@ Points in R™

@ Points of categorical data
@ Points of mixed data

© Mietrics for functions

@ Mietrics for random variables/distributions
@ Not quite a metric: KL divergence
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We recall that

@ For some space S, we call a function
d:SxS —R

a distance, if it fulfils the following three requirements Va,b € S:
Q d(a,b)=0&a=b

Q d(a,b) >0
© d(a,b) =d(b,a)
@ The definition of the euclidean distance is, for some p € N,

deuclid ‘R x RP — R, (a, b) —
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Metric (space)s
Metric (spaces) |

@ To be more precise, the previous definition is sometimes given for
metric spaces, other times distance is used as a synonym for metric.

@ Let's say that in our previous definition, we also required d to fulfill
the triangle inequality (which is how we get a metric), meaning that
for a,b,c € S

d(a,c) <d(a,b) +d(b,c). (1)

@ Then, the positivity assumption becomes redundant, because

0" d(a,a) < d(a,b) + d(b,a) = 2d(a,b).,

so it has to hold that d(a,b) > 0 Va,b € S!
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Metric (space)s

Metric (spaces) |l

Definition (Metric (space))
Given some space S, we call a function d : § x & — R metric (or
sometimes distance), if it fulfils the following three requirements

Ya,b,c € S:
Q d(a,b)=0<a=0b

@ d(a,b) =d(b,a)  (Symmetry)
@ d(a,c) <d(a,b) +d(b,c) (Triangle Inequality).

The pair (S, d) is then called a metric space.
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Metric (space)s

Metric (spaces) Il

@ Fun fact: Metric spaces generalize the concept of the "real line" R in
calculus!

@ In all kinds of settings, we will use them as the basis to formulate a
mathematical question.

@ Another, somewhat similar general concept are normed vector
spaces, where the norm gives the length of a vector.

Hannah Schulz-Kiimpel 6/35



Metric (space)s

Connection between norms and distances/metrics |

Deﬁnition (credited to )

A normed vector space (S, || - ||) is a vector space X (which we assume to
be real) together with a function

[-1:S—=R,
called a norm on S, such that for all z,y € Sand k e R :

Q 0 <|z| <ooand |z|| =0 if and only if x = 0;

© ||zl = [kl

Q [lz +yll <] + llyll-
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https://www.math.ucdavis.edu/~hunter/m125a/intro_analysis_ch7.pdf

Metric (space)s

Connection between norms and distances/metrics |l

A norm on a vector space will always give rise to a metric on the same
vector space by taking the norm of the difference between two vectors.

Proposition

If (S,||-|]) is a normed vector space, then
d:SxS—=R, (z,y)—|lz—yv|

is a metric on S.

Proof.
The metric-properties of ||z — y|| follow immediately from the
norm-properties - check it yourself :) O

Hannah Schulz-Kiimpel 8/35



Metric (space)s

Some examples of norms for S = R™ |

@ p-norm:
1
[z]lp := (22 ” + [zl + - 4 [2m[?) 7

o Euclidean norm, which is equal to the 2-norm:

lall i= /a3 + a3+ +a2,

Note: The euclidean norm clearly gives rise to the euclidean distance
deuclid» Which is also a metric, using the previous proposition.

e Maximum norm:

||| max = max{]xl\, |zal, ..., |xm]}
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Metric (space)s

Some examples of norms for S = R™ ||

Figure: The unit balls in R? for the Euclidean norm (Bs), the 1-norm (B;) and
the maximum norm (Bpax). Source:
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https://www.math.ucdavis.edu/~hunter/book/ch1.pdf

Motivation: When and why use (which) metrics?

What do Statisticians use metrics for?

@ Clearly, metrics quantify some notion of distance between
mathematical objects - which we basically need everywhere, all the
timel!

@ Just some examples:

© We recall that we may view estimates of variance as inertia or spread
around the center of gravity - for which we require a definition of
distance between our points!

@ Anytime we want to optimize something w.r.t. distance/loss - both in
supervised and unsupervised learning!

Hannah Schulz-Kiimpel 11/35



Motivation: When and why use (which) metrics?

Supervised vs. unsupervised learning: an overview

supervised learning
Input data

ﬁ Prediction

_ltsan |
apple!

Annotations

Model

These are

apples ﬁ ?

unsupervised learning

\r.pumm: b 5 é ﬁ
Yve 1 wws
ﬁ 55 Model 9 S
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Motivation: When and why use (which) metrics?

Examples of using loss in (un)supervised learning

e Parameter estimation using OLS! Here, we want to minimize over
the squared loss (which is clearly a metric) to estimate a parameter
— supervised learning.

e Clustering according to some loss (metric) in unsupervised
learning - we need to know how close points are to, e.g., “means”.

Unlabelled Data Labelled Clusters
LIPS [ I )
o ® o o
[ ]
PY 1 0% K-means
e

o °° X = Centroid

Figure: Example of Clustering; Source:
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https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c

Motivation: When and why use (which) metrics?

Relevant spaces to consider metrics on

@ Spaces of “data points”. Here, there are actually different cases we
need to consider separately :

@ metric data points taking values in R, m € N.

Q categorica/ data points taking values in Q1 x -+ x Q,,,, m € N - where
Q; = {W1 ,w2 ...} denotes the set of values the ith variable/entry of
the data point could take.

© mixed data points, where some entries/variables are metric and others
categorical.

@ Function spaces. These are, for example, relevant in nonparametric
statistics, where the parameters are functions.

@ Spaces of probability measures. These have a host of applications,
from parameter estimation to proof of convergences etc.
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Basic metrics for metric data (on R™) |

Using the proposition from slide 7 and the norms from slide 9, we
immediately get the following metrics:

1
m »
dp(2,y) = [z —yllp = (Z |z — yi|p>

i=1

@ p-metric:

@ Euclidean distance, which is equal to the 2-metric:

Z(l‘z‘ - yi>2

=1

deuclid(w7y) = Hl’ - y” =

@ Chebyshev distance (induced by the Maximum norm):

dchebyshev (T, Y) := [|[—ylmax = max {|z1—v1], |z2—v2|, - -, [Tm—Ym]| }
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Basic metrics for metric data (on R™) Il

@ Furthermore, the 1-metric is referred to as Manhattan distance:

dManhattan x y

Z |xz yz

X = (Gp15 Xp2)

X, = (g1, X0)

X

From: Fu, Chen & Yang, Jianhua. (2021). Granular Classification for Imbalanced Datasets:

p =2 Euclidean distance
2 2. L
lIx, = Xpllz = (X = X1 I” + [ X2 = %5217)2

p =1 Manhattan distance
11X, = Xpllar = 1Xa1 = X1 | + [ X2 = %]

p =00 Chebyshev distance

1%, = Xplloo = max{ [x,; — x|, [ %0 — 252 | }

A Minkowski Distance-Based Method. Algorithms. 14. 54. 10.3390/a14020054.
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Distances on R™ that are not quite metrics |

@ Sometimes to quantify standardized distances between points, the
following similarity approach is used:

@ Define a similarity measure s : S x S — R, s.t.

d(a,a) =1VaeS & d(a,b) =4d(b,a)Va,be S

@ Define the distance function

d:S5xS8—R, (a,b)—1—-5(a,b).

@ One example would be using the Pearson correlation coefficient as § to
get the Pearson correlation distance.
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Distances on R™ that are not quite metrics Il

@ Another, quite popular choice for similarity measure is the cosine
similarity

D1 Tl

dcos : R x R™ — [-1,1], (z,y) —
Iyl

which gives rise to the cosine distance

dcos(xay) =1~ 5cos($7y) .

@ The cosine distance is often used in the context of data mining; for
instance in information retrieval and text mining, where each word is
assigned a unique coordinate.
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Distances on R™ that are not quite metrics Il

@ Then, the distance depends not on the length of the vectors, but on
the the angle between them w.r.t. the center of the coordinate space.

N 'r~
A= Sim(A, B) = cos(0) =

/ »

A-B
A 11l Bl

A\ 4
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Distances on R™ that are not quite metrics Il

@ Then, the distance depends not on the length of the vectors, but on
the the angle between them w.r.t. the center of the coordinate space.

N ‘r*
A-B
A == 5 Sim(A,B)=cos(f) = ————
;. %%, A 1l Bl
% %,
¥, %
O%Q"% -
y S
B
e
N
d
X
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Basic approach to metrics for categorical data points

@ For categorical data points taking values in Q = Q1 x - -+ X Q,,
m € N, the simplest and most popular metric is what is often referred
to as 0-1 loss:

0, ifzx=y,

L:OxQ—{0,1}, (x,y)+— _
1, otherwise.

@ For ordered categorical data points, i.e. when w] € wy K -+ K Wiy
we could expand the concept of 0 — 1 loss and replace “1, otherwise”
with a different distance value for each pair of possible values, as long
as the pair (w1, wy,) gets assigned the largest distance value and so on.

o Additionally, if a distance instead of a metric suffices, we may use the
similarity approach from slide 17, taking, e.g., a correlation coefficient
for categorical variables as ¢.
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Pairwise comparison:Hamming and Levenshtein distances |

@ Another approach to comparing categorical data points is to pairwise
compare each element.

@ This approach is especially popular in information theory, linguistics,
and computer science.

@ In this context, the Hamming and Levenshtein distances are
especially popular.

@ While we will not consider the exact definitions, the following provides
an intuition for both:
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Pairwise comparison:Hamming and Levenshtein distances ||

@ The Hamming distance quantifies the the number of positions at
which the elements of our categorical points are different.

@ Here is an example from

HammingDistance(4,14) = 2

HammingDistance(4,2) = 2

HammingDistance(14,2) = 2
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https://medium.com/geekculture/total-hamming-distance-problem-1b74decd71c9

Pairwise comparison:Hamming and Levenshtein distances Il
@ Meanwhile, the Levenshtein distance can even compare points of

different lengths! It quantifies the minimum of changes (including
deletions) necessary to change one point into the other.

@ Here is an example from

| e e e o
‘ Step 1: delete ‘@
Jp=<(Iu | e e [
‘ Step 2: add ‘A’
0 | e [

_!EEEE_ evenshtein distanc
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https://towardsdatascience.com/3-text-distances-that-every-data-scientist-should-know-7fcdf850e510

A ik
What if we have mixed data points?

@ Metrics defined specifically for mixed data are not a focus of this class,
but here is one exemplary suggestions:

@ Use a weighted sum of distances: Let's say that we can “divide” a
mixed data point into L parts, for each of which we have a suitable
distance function at hand. Then we may define

L
d(z,y) =Y _di(=[l],y[l]) - w,
=1

but mind the scaling of variables within our parts and define the
weights carefully to achieve a meaningful result.
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Metrics for functions

Function spaces

@ Sometimes, we will want to quantify the distance between functions.

@ In applied statistics, this is mostly the case when the parameter of a
model is a function instead of a finite-dimensional vector
(Nonparametric inference).

@ How do we define function spaces? Well usually, we say that some
function space is the set of all functions that

@ map from the same space (preimage)
@ to the same space (image)

© fulfill some additional characteristics.
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Metrics for functions

Some popular norms and metrics on function spaces |

@ For a function f : X — Y, the supremum norm is defined as

[flloo :=sup {|f(z)] : 2 € X'}

which, for another function g : X — Y gives rise to the following
metric:

If = glloo :=sup{|f(z) — g(z)| 1z € X} .

o What would we need from a function space on which this norm and
metric are defined?
Definitely, that for any function in the space |f(z)| < co Va € X.

» For example:
BR):={f:R—R|IM €R: f(z) <M Vze X}
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Metrics for functions

Some popular norms and metrics on function spaces ||

@ For a function f : X — Y, the p-norm is defined as

1= (/. |f<x>|de>3’

which, for another function g : X — Y gives rise to the following

metric: .
I =alli= ([ 15) - taras) "

o What would we need from a function space on which this norm and
metric are defined? Definitely, that for any function in the space
fX |f(x)Pde < 0.

» For example: C(K) :={f: K — R|f is continuous} for some
compact set K such as [a,b], a,b € R.
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Metrics for random variables/distributions

Metrics for random variables/distributions

@ Next we will look at two popular metrics, plus a “distance-like"
function (does not satisfy all requirements), for probability measures.

o Note that the elements that we are comparing are probability
measures, and we need to define a suitable space for them.

o Let Q) denote some specific sample space equipped with o-algebra F.

@ For the following slides, we will assume that all mentioned probability
measures are elements of the following set:

S(Q,F) = {,u . is a probability measure on (Q,}")}.
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Total Variation (TV) distance

e The total variation (TV) distance is a metric for probability measures
which quantifies the largest absolute difference between the
probabilities that the two probability distributions assign to the same
event.

@ For two probability measure p and v defined on the same probability
space (92, F), it is defined as

Dry(p,v) = sup [u(A) —v(A4)|.

@ Note that this metric again organically arises from the TV-norm
| pellTv := sup ze 7 |1(A)| on the space S(€2, F) we previously defined.
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Metrics for random variables/distributions

Wasserstein metric
@ The Wasserstein metric is a metric for probability measures.

@ Very broadly, we may interpret this metric as quantifying the
“minimum cost” of transforming one probability measure into another.

@ Specifically, the p-Wasserstein metric between probability measures 1
and v is defined as

YET (V)

W) =t [ XQd(x,yvdv(x,y))l/p |

where I'(1, v) is the set of possible probability measures on © x €2, so
that i and v exist as marginal distributions and d is a suitable metric
on €.
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Not quite a metric: KL divergence
Kullback-Leibler (KL) divergence |

e The Kullback-Leibler (KL) divergence, also known as relative entropy,
is a measure of how one probability distribution diverges from a
second probability distribution.

@ While it is often used to quantify how different an estimate of a
probability distribution is from the probability distribution we
theoretically expected (or assume to be true).

o Note, however, that the KL divergence is not a metric because it does
not fulfill the requirement of symmetry!
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Not quite a metric: KL divergence
Kullback-Leibler (KL) divergence Il

Definition (Kullback—Leibler (KL) divergence)

For two probability measures 11 and v on a space X, the Kullback—Leibler
divergenceis defined as

Dia(ullv) = [ 1og (“Ej;) )

2 u(z) - log (&x%) dx, if y and v are defined

by continuous distributions;
> wenr () - log (ﬁgg) , if u and v are defined
by discrete distributions.
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Not quite a metric: KL divergence
Kullback-Leibler (KL) divergence Il

Visualization

Source: Yang, Xuxi & Duvaud, Werner & Wei, Peng. (2020). Continuous Control for Searching and Planning with a Learned Model.

q* = argmin, Dk (p||q)

~—

— plz

Probability Density
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(WIS TCR (T ST T T IVETEL CEYL IR N EI  Not quite a metric: KL divergence

KL divergence and maximum likelihood |

Interestingly, maximum likelihood estimation (in parametric, i.i.d. settings),
asymptotically, amounts to minimizing the KL divergence between the
“true” assumed distribution and the estimated distribution.

Per definition, we have that

Dic[P(x100) | P(2(0)] = Eppaioo)

lo —
0

P(xwo)]

— By p(eian) 108 P(aldo) —log P(x|d)]

= By p(2]60) [108; P(l'Wo)} — B P(al00) [log P("ﬂé)]
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(WIS TCR (T ST T T IVETEL CEYL IR N EI  Not quite a metric: KL divergence

KL divergence and maximum likelihood Il
— argmin D [P(z|6o) || P(z]0)] = arg max K, p(z|,) {log P(:E’é)}
0 0

The law of large numbers (LLN) gives us that

B R R
Jlim ;log P(116) = Eqrep(sjar) [l0g P(e19)] -

And, therefore, we have

R 1< R
argmin Dy, [P(x|6p) || P(x(0)] = argmax — ) " log P(x;|6)
] 6 "

= arg max log P(x;]0)
b

= argmaxP(:z:Aé) = O !
b
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